DERIVATIONS HAVING DIVERGENCE ZERO ON R[X, Y]

BY

JOOST BERSON, ARNO VAN DEN ESSEN AND STEFAN MAUBACH

Department of Mathematics, University of Nijmegen Toernooiveld, 6525 ED Nijmegen, The Netherlands e-mail: berson@sci.kun.nl, stefanm@sci.kun.nl, essen@sci.kun.nl

ABSTRACT

In this paper it is proved that for any Q-algebra R any locally nilpotent R-derivation D on R[X,Y] having divergence zero and $1 \in (D(X),D(Y))$ (i) has a slice, and (ii) $A^D = R[P]$ for some P. Furthermore, it is shown that any surjective R-derivation on R[X,Y] having divergence zero is locally nilpotent. Connections with the Jacobian Conjecture are made.

1. Introduction

Locally nilpotent R-derivations on the polynomial ring R[X,Y] where R is a UFD containing $\mathbb Q$ were studied by Daigle and Freudenburg in [3]. The more general situation where R is a (normal) Noetherian domain containing $\mathbb Q$ was studied by Bhatwadekar and Dutta in [2]. They showed, amongst other things, that if D is a locally nilpotent derivation on R[X,Y] such that the ideal generated by D(X) and D(Y) contains 1, then $R[X,Y]^D$ is a polynomial ring in one variable over R and R[X,Y] is a polynomial ring in one variable over $R[X,Y]^D$. In particular, this implies that D has a slice in R[X,Y].

In this paper we generalise this result to arbitrary \mathbb{Q} -algebras R in the sense that we consider locally nilpotent derivations having divergence zero (in the domain case any locally nilpotent derivation has divergence zero).

Also, we generalise a result of Stein in [8], asserting that any surjective k-derivation on k[X,Y] (k a field of characteristic zero) is locally nilpotent, to surjective divergence zero R-derivations on R[X,Y] where R is an arbitrary \mathbb{Q} -algebra.

At the end of this paper we relate this result to the Jacobian Conjecture. In fact the importance of divergence zero derivations for this conjecture will be described in a forthcoming paper of the second author.

2. Preliminaries

In the rest of this paper R denotes a commutative \mathbb{Q} -algebra, A an R-algebra containing R and D an R-derivation on A. The set of elements $a \in A$ satisfying Da = 0 is denoted by A^D . It is an R-subalgebra of A called the **ring of constants** of D. An element $s \in A$ satisfying Ds = 1 is called a **slice** of D and finally D is called **locally nilpotent** if for every $a \in A$ there exists $n \in \mathbb{N}$ with $D^n a = 0$.

2.1 Derivations having a slice.

PROPOSITION 2.1: Let D be a locally nilpotent R-derivation on A having a slice $s \in A$. Then $A = A^D[s]$, a polynomial ring in s over A^D and D = d/ds on A.

For a proof we refer to [6], [9] or [4], proposition 1.3.21.

COROLLARY 2.2: Let D be a locally nilpotent R-derivation on A. Then D has a slice in A if and only if D is surjective.

Proof: Follows immediately from Proposition 2.1 since d/ds on $A^D[s]$ is surjective.

To formulate the next lemmas we introduce some notation. Let I be an ideal of R. The element a+AI in A/AI will be denoted by a_I and the induced derivation on A/AI by D_I .

LEMMA 2.3: Let D be an R-derivation on A. Let $I, J \subset R$ be ideals of R and suppose D_I has a slice and D_J is surjective. Then D_{IJ} has a slice.

Proof: There exists $s \in A$ such that $D_I(s_I) = 1$ and hence D(s) = 1 + f for some $f \in IA$. Write $f = \sum f_{\alpha}a_{\alpha}$, where $f_{\alpha} \in I$ and $a_{\alpha} \in A$. Since D_J is surjective there exists $F_{\alpha} \in A$ such that $D(F_{\alpha}) = a_{\alpha} + h_{\alpha}$, where $h_{\alpha} \in JA$. Denote $S := s - \sum f_{\alpha}F_{\alpha}$. Then

$$\begin{split} D(S) = &D(s - \sum f_{\alpha}F_{\alpha}) \\ = &D(s) - \sum f_{\alpha}D(F_{\alpha}) \\ = &1 + f - \sum (f_{\alpha}a_{\alpha} + f_{\alpha}h_{\alpha}) \\ = &1 - \sum f_{\alpha}h_{\alpha}, \end{split}$$

and since $f_{\alpha}h_{\alpha} \in IJA$ we have $D_{IJ}(S_{IJ}) = 1$.

LEMMA 2.4: Let D_{I_i} be surjective for the ideals $I_1, \ldots, I_r \subset R$. Then $D_{I_1 \cdot \ldots \cdot I_r}$ is also surjective.

Proof: It is enough to show that if D_I, D_J are surjective then D_{IJ} is too. Let $a \in A$ be arbitrary. There exists $b \in A$ such that $D_I(b_I) = a_I$, hence D(b) = a + i where $i \in IA$. Write $i = \sum_{k=0}^t i_k c_k$ where $i_k \in I$, $c_k \in A$. Then for every c_k there exists for some d_k such that $D(d_k) = c_k + j_k$ for some $j_k \in JA$ since D_J surjective. Now $D(b - \sum_{k=0}^t i_k d_k) = a - \sum_{k=0}^t i_k j_k$. Since $\sum_{k=0}^t i_k j_k \in IJA$ we're done.

LEMMA 2.5: Let D be a locally nilpotent R-derivation on A. If $I_1, \ldots, I_r \subset R$ are ideals of R and D_{I_i} has a slice for all i, then $D_{I_1 \cdots I_r}$ has a slice too.

Proof: It is enough to show that if D_I, D_J both have a slice then D_{IJ} has one too. By Corollary 2.2, D_I and D_J are surjective. By Lemma 2.4, D_{IJ} is surjective. In particular, D_{IJ} has a slice.

LEMMA 2.6: If $I_1, \ldots, I_r \subset R$ are ideals of R and D_{I_i} is locally nilpotent for all i, then $D_{I_1 \cdot \ldots \cdot I_r}$ is locally nilpotent too.

Proof: It is enough to show that if D_I, D_J are locally nilpotent then D_{IJ} is locally nilpotent. Let $a \in A$. One knows there exists $N \in \mathbb{N}$ such that $D_I^N(a_I) = 0$, hence $D^N(a) = \sum_{k=0}^t i_k b_k$ where $i_k \in I, b_k \in A$. Now there exists $M_k \in \mathbb{N}$ such that $D^{M_k}(b_k) \in JA$. Let $M = \max_k(M_k)$. Then $D^{N+M}(a) = D^M(\sum_{k=0}^t i_k b_k) = \sum_{k=0}^t i_k D^M(b_k) \in IJA$.

2.2 Polynomial automorphisms over a commutative ring. Let $n \ge 0$. Then $R^{[n]}$ denotes the polynomial ring $R[X] := R[X_1, \ldots, X_n]$. An R-homomorphism of $R^{[n]}$ is completely determined by the images of the X_i . So we get a one-to-one correspondence between the R-homomorphisms of $R^{[n]}$ and the n-tuples $F = (F_1, \ldots, F_n) \in (R^{[n]})^n$. Such an n-tuple we call a **polynomial** map over R. Restricting the above correspondence to the R-automorphisms of $R^{[n]}$ we get a one-to-one correspondence with the so-called *invertible* (over R) polynomial maps. It is well-known that F is invertible over R if and only if $R[X] = R[F_1, \ldots, F_n]$.

Now let $F = (F_1, \ldots, F_n) \in (R^{[n]})^n$ and \mathfrak{p} be a prime ideal of R. Reducing all coefficients of all F_i modulo \mathfrak{p} we get a polynomial map over R/\mathfrak{p} , which we

denote by $F_{\mathfrak{p}}$. So $F_{\mathfrak{p}} = (F_{1\mathfrak{p}}, \ldots, F_{n\mathfrak{p}})$. Obviously, if F is invertible over R, hence so is $F_{\mathfrak{p}}$ over R/\mathfrak{p} . In section 3 below we need the following converse.

PROPOSITION 2.7: Let R be noetherian and $F \in (R^{[n]})^n$. If $F_{\mathfrak{p}}$ is invertible over R/\mathfrak{p} for all minimal prime ideals of the nilradical η , then F is invertible over R.

Proof: Since R is noetherian, $\eta = \mathfrak{p}_1 \cap \cdots \cap \mathfrak{p}_r$, a finite intersection of all minimal prime ideals of R. Furthermore, $\eta^e = 0$ for some $e \geq 1$. If \mathfrak{p} is one of the \mathfrak{p}_i , then the hypothesis on $F_{\mathfrak{p}}$ implies that

$$R[X] \subset \mathfrak{p}R[X] + R[F]$$
, where $R[F] = R[F_1, \dots, F_n]$.

So

$$R[X] \subset \mathfrak{p}_1 R[X] + R[F] \subset \mathfrak{p}_1(\mathfrak{p}_2 R[X] + R[F]) + R[F] \subset \mathfrak{p}_1 \mathfrak{p}_2 R[X] + R[F].$$

Continuing in this way we get

(1)
$$R[X] \subset \mathfrak{p}_1 \cdots \mathfrak{p}_r R[X] + R[F] \subset \eta R[X] + R[F].$$

Applying (1) again we get

$$R[X] \subset \eta(\eta R[X] + R[F]) + R[F] \subset \eta^2 R[X] + R[F].$$

Continuing in this way and using that $\eta^e = 0$ we get

$$R[X] \subset \eta^e R[X] + R[F] = R[F].$$

So R[X] = R[F], i.e., F is invertible over R.

To conclude this section of preliminaries we recall a well-known result concerning locally nilpotent derivations on $R^{[n]}$ in case R is a domain. Let D be an R-derivation on $R^{[n]} = R[X_1, \ldots, X_n]$. Then D is of the form $a_1\partial_1 + \cdots + a_n\partial_n$ with $a_i \in R^{[n]}$ for all i. The **divergence** of D, denoted div D, is defined as the element $\sum_{i=1}^n \partial_i(a_i)$ in $R^{[n]}$.

PROPOSITION 2.8: If R is a domain and D a locally nilpotent R-derivation on $R^{[n]}$, then div D = 0.

Since the authors do not know of any reference except proposition 1.3.51 in [4], we include a short proof.

Proof: Introduce a new variable T and consider $R^{[n+1]} = R[X,T]$. Extend D to an R-derivation \widetilde{D} on $R^{[n+1]}$ by putting $\widetilde{D}(T) = 0$. Obviously \widetilde{D} , and hence also

 $T\widetilde{D}$, is locally nilpotent on $R^{[n+1]}$. Consequently $F:=\exp T\widetilde{D}\in \operatorname{Aut}_R R^{[n+1]}$. Since $F_i=\exp TD(X_i)=X_i+D(X_i)T+\cdots$ for all $1\leq i\leq n$ and $F_{n+1}=T$, one easily verifies that

$$J_{X_1,\ldots,X_n,T}F = I_{n+1} + \begin{pmatrix} \begin{pmatrix} \frac{\partial D(X_i)}{\partial X_j} \end{pmatrix} & 1 \leq i,j \leq n \\ 0 \end{pmatrix} T + \cdots,$$

which implies that the coefficient of T in the T-expansion of $j(F) := \det J_{X_1,...,X_n,T}F$ equals

$$\sum \frac{\partial D(X_i)}{\partial X_i} = \operatorname{div} D.$$

On the other hand, since $F \in \operatorname{Aut}_R R^{[n+1]}$ it follows that $j(F) \in (R^{[n+1]})^* = R^*$ (since R is a domain!). In particular, the T-coefficient of j(F) equals zero. So div D = 0, as desired.

3. Divergence zero derivations

Throughout this section let A = R[X, Y] and D be a non-zero R-derivation on A with divergence zero. Then it is well-known that $D = P_Y \partial_X - P_X \partial_Y$ for some $P \in A$ (where $P_X = \partial_X(P)$ and $P_Y = \partial_Y(P)$ are the derivatives of P), which is unique if one assumes P(0,0) = 0. We denote this element by P(D). We say that R has property B(R) if and only if the following holds:

B(R) Any locally nilpotent derivation D on A with div(D) = 0 and $1 \in (D(X), D(Y))$ has a slice and satisfies $A^D = R[P(D)]$.

The main aim of this section is to show that B(R) holds for any \mathbb{Q} -algebra R (Theorem 3.5). We first reduce to the case that R is Noetherian. Therefore, let R' be the \mathbb{Q} -subalgebra of R generated by the coefficients of the polynomials P, a and b where a, b are such that $1 = aP_X + bP_Y$. Notice that R' is noetherian, regardless of R. Write A' = R'[X, Y], D' the restriction of D to A'.

LEMMA 3.1: If D' has a slice and $A'^{D'} = R'[P]$, then D has a slice and $A^D = R[P]$.

Proof: Let $S \in A'$ such that D'(S) = 1. Then since $A' \subseteq A$ we have $S \in A$ and D(S) = D'(S) = 1. So let ${A'}^{D'} = R'[P]$. By Proposition 2.1 we get $R'[X,Y] = A' = {A'}^{D'}[S] = R'[P,S]$. So there exist $F,G \in R'[X,Y]$ such that F(P,S) = X and G(P,S) = Y. But since all is contained in R[X,Y] we have

$$R[X,Y] = R[F(P,S), G(P,S)] \subseteq R[P,S] \subseteq R[X,Y].$$

Hence $A^{D} = R[P, S]^{D} = R[P]$.

To prove B(R) for Noetherian domains containing \mathbb{Q} , we first need a lemma from [3]

LEMMA 3.2: Let R be a domain containing \mathbb{Q} and $P \in R[X,Y]$ such that $1 \in (P_X, P_Y)$. Then $K[P] \cap R[X,Y] = R[P]$, where K = Q(R), its field of fractions.

Proof: If $K[P] \cap R[X,Y] \not\subseteq R[P]$, then there exists an $F \in K[T] \setminus R[T]$ with $F(P) \in R[X,Y]$. Choose one of minimal degree. Observe that $F(P) \in R[X,Y]$ implies that $F'(P)P_X$ and $F'(P)P_Y$ belong to R[X,Y].

Since there are $g,h \in R[X,Y]$ with $P_Xg + P_Yh = 1$, we deduce $F'(P) = F'(P)P_Xg + F'(P)P_Yh \in R[X,Y]$. So $F'(T) \in K[T]$ and $F'(P) \in R[X,Y]$, thus by minimality of the degree of F we must conclude that $F' \in R[T]$. Now write $F = \sum_{i=0}^d f_i T^i$; then $F' \in R[T]$ implies (since R is a \mathbb{Q} -algebra) that $f_i \in R$ for all $i \geq 1$, thus yielding $f_0 = F(P) - \sum_{i=1}^d f_i P^i \in R[X,Y] \cap K = R$, contradicting the assumption that $F \notin R[T]$.

Now we can prove the next theorem:

LEMMA 3.3: Let R be a Noetherian domain containing \mathbb{Q} and D a locally nilpotent derivation on R[X,Y] with $1 \in (D(X),D(Y))$. Then $R[X,Y]^D = R[P]$ for some $P \in R[X,Y]$ and D has a slice $t \in R[X,Y]$.

Proof: Let K be the quotient field of R. Extend D to K[X,Y] the natural way. We know by Rentschler's theorem (see for example [7] and [4], Th. 1.2.25) that there is a $Q \in K[X,Y]$ with $K[X,Y]^D = K[Q]$. Because D is locally nilpotent, we know by Proposition 2.8 that $\operatorname{div}(D) = 0$, so there is a $P \in R[X,Y]$ with $D(X) = P_Y$ and $D(Y) = -P_X$. This means that D(P) = 0 and, as a consequence, $P \in K[X,Y]^D = K[Q]$. So write P = g(Q) with $g \in K[T]$. We now have $P_X = g'(Q)Q_X$ and $P_Y = g'(Q)Q_Y$. Notice that $(P_Y, P_X) = (D(X), D(Y)) = (1)$ (also in K[X,Y]), which means that $g'(Q) \in K^*$. Then there are $\lambda, \mu \in K$, $\lambda \neq 0$ satisfying $P = g(Q) = \lambda Q + \mu$, yielding K[P] = K[Q]. By the previous lemma, $R[X,Y]^D = K[X,Y]^D \cap R[X,Y] = K[P] \cap R[X,Y] = R[P]$. Hence we proved our first claim. Now we can use Theorem 4.7 in [2] to conclude that

(1)
$$R[X,Y] = R[P][s]$$
 for some $s \in R[X,Y]$.

This means that $f: R[X,Y] \longrightarrow R[X,Y]$ defined by f(X) = P(X,Y) and f(Y) = s(X,Y) satisfies $f \in \operatorname{Aut}_R R[X,Y]$. A well-known consequence is that

(2)
$$\det Jf \in R[X,Y]^* = R^*.$$

But this determinant is equal to $-P_Y s_X + P_X s_Y = -D(s)$. So $D(s) \in R^*$, whence t := s/D(s) satisfies D(t) = 1 and we are done.

Combining Lemma 3.1 and Theorem 3.3 we have

Theorem 3.4: Let R be any domain containing \mathbb{Q} . Then B(R) holds.

Now we are able to prove the main theorem of this section.

Theorem 3.5: Let R be any Q-algebra. Then B(R) holds.

Proof: Let $D = P_Y \partial_X - P_X \partial_Y$ be an arbitrary locally nilpotent derivation on R[X,Y] with div D=0 and $1 \in (P_X,P_Y)$. We have to prove that D has a slice and that $A^D=R[P]$. By Lemma 3.1 we may assume that R is Noetherian. So the nilradical η of R can be written as $\eta = \mathfrak{p}_1 \cap \cdots \cap \mathfrak{p}_r$, where the \mathfrak{p}_i run through all minimal prime ideals of R and $\eta^e = 0$ for some $e \geq 1$.

- (i) First we show that D has a slice in A. Therefore observe that by Theorem 3.4, $D_{\mathfrak{p}_i}$ has a slice in $R/\mathfrak{p}_i[X,Y]$ for all i. So by Lemma 2.5, D_{η} has a slice in $R/\eta[X,Y]$. Then again by Lemma 2.5, D_{η^e} has a slice in $R/\eta^e[X,Y]$. Since $\eta^e = 0$, this means that D has a slice, say s in R[X,Y] = A.
- (ii) Finally we claim: R[P,s] = R[X,Y], which upon using Ds = 1 and DP = 0 implies that $R[X,Y]^D = R[P]$ as desired. To see the claim it suffices by Proposition 2.7 to see that each $F_{\mathfrak{p}_i}$ is invertible over R/\mathfrak{p}_i , where F = (P,s). However, by Theorem 3.4 we know that $R/\mathfrak{p}_i[X,Y]^{D_{\mathfrak{p}_i}} = R/\mathfrak{p}_i[P_{\mathfrak{p}_i}]$ and obviously, $D_{\mathfrak{p}_i}(s_{\mathfrak{p}_i}) = 1$. So by Proposition 2.1 we get $R/\mathfrak{p}_i[X,Y] = R/\mathfrak{p}_i[P_{\mathfrak{p}_i},s_{\mathfrak{p}_i}]$, i.e., $F_{\mathfrak{p}_i}$ is invertible over R/\mathfrak{p}_i .

4. Surjective derivations and the two-dimensional Jacobian Conjecture

In this section we consider surjective R-derivations on $R[X_1, X_2]$ having divergence zero. The main result is

THEOREM 4.1: Let R be any \mathbb{Q} -algebra. Then any surjective R-derivation on $R[X_1, X_2]$ having divergence zero is locally nilpotent.

To prove this theorem we recall a result of [4]. Let D be a non-zero derivation on $R[X_1, X_2]$. Put $d := \max_{i,j} \deg_{X_i} D(X_j)$.

PROPOSITION 4.2 ([4], Theorem 1.3.52): Let R be a domain containing \mathbb{Q} . Then D is locally nilpotent if and only if $D^{d+2}(X_i) = 0$ for i = 1, 2.

One can easily deduce Proposition 4.2 by reducing it first to the case that R is a field, and then use P from the proof of Theorem 3.3 and apply Corollary 1.5 from [5] to show that $D^{\deg_Y}(P)+1(X)=0$.

Proof of Theorem 4.1: (i) If R is a field, the result was proved by Stein in [8]. From this one easily deduces the case when R is a domain.

(ii) Now let D be a surjective R-derivation on $R[X_1, X_2]$ with divergence zero and $\mathfrak p$ a prime ideal in R. Then $D_{\mathfrak p}$ is a surjective $R/\mathfrak p$ -derivation on $R/\mathfrak p[X_1, X_2]$ having divergence zero. So by (i) and Proposition 4.2 it follows that $D^{d+2}(X_i) \in \mathfrak p R[X_1, X_2]$ for i = 1, 2 (where d is as defined above before Proposition 4.2). Since this holds for all $\mathfrak p$ we get that $D^{d+2}(X_i) \in \eta R[X_1, X_2]$ for i = 1, 2. So D_{η} is locally nilpotent on $R/\eta[X_1, X_2]$. Then the result follows from Lemma 4.3.

LEMMA 4.3: If D is an R-derivation on $R[X] := R[X_1, ..., X_n]$ such that D_{η} is a locally nilpotent R/η -derivation on $R/\eta[X]$, then D is locally nilpotent.

- Proof: (i) Let R_0 be the subring of R generated by all coefficients appearing in the polynomials $D(X_1), \ldots, D(X_n)$. Then R_0 is noetherian and the restriction of D to $R_0[X]$, which we denote by D_0 , is an R_0 -derivation of $R_0[X]$. Observe that D is locally nilpotent if and only if D_0 is locally nilpotent. Furthermore, the nilradical of R_0 equals $R_0 \cap \eta$. Therefore, we can replace R by R_0 and we may assume without loss of generality that R is noetherian.
- (ii) So assume that R is noetherian. Then there exists $e \ge 1$ such that $\eta^e = 0$. Since D_{η} is locally nilpotent, it follows from Lemma 2.6 that $D \ (= D_{\eta^e})$ is locally nilpotent too.

To conclude this paper we wish to relate Theorem 4.1 to the two-dimensional Jacobian Conjecture. Recall that one can generalize the usual n-dimensional complex Jacobian Conjecture to JC(R,n): If $F \in (R^{[n]})^n$ with $\det JF \in (R^{[n]})^*$, then R[X] = R[F].

It was shown in [1] (see also [4]) that for each $n \geq 1$, $JC(\mathbb{C}, n)$ implies JC(R, n) for any \mathbb{Q} -algebra R. In particular, $JC(\mathbb{C}, 2)$ implies JC(R, 2). This enables us to prove

Proposition 4.4: There is equivalence between

- (i) $JC(\mathbb{C},2)$ is true.
- (ii) For every \mathbb{Q} -algebra R, every R-derivation D on R[X,Y] with $\operatorname{div} D = 0$ and $1 \in \operatorname{Im} D$ is locally nilpotent.
- (iii) Every C-derivation D on $\mathbb{C}[X,Y]$ with $\operatorname{div} D=0$ and $1\in \operatorname{Im} D$ is locally nilpotent.

 1, i.e., $\det J(s, P) = 1$. Since as observed above $JC(\mathbb{C}, 2)$ implies JC(R, 2), we deduce that R[s, P] = R[X, Y]. Consequently, D is locally nilpotent on R[X, Y].

(ii) \rightarrow (iii) is obvious. Finally, assume (iii) and let $F = (F_1, F_2) \in \mathbb{C}[X, Y]^2$ with det JF = 1. Then $\partial/\partial F_1$ (= $F_{2Y}\partial_X - F_{2X}\partial_Y$) has divergence zero and

$$1 = \frac{\partial}{\partial F_1}(F_1) \in \operatorname{Im} \frac{\partial}{\partial F_1}.$$

So by hypothesis $\partial/\partial F_1$ is locally nilpotent. Similarly, $\partial/\partial F_2$ is locally nilpotent. Then it is well-known (see [1] or [4], proposition 2.2.10) that F is invertible over \mathbb{C} . So $JC(\mathbb{C},2)$ holds.

QUESTION 1: Can one give a finite number of elements a_1, \ldots, a_m in R[X, Y] such that $a_i \in \text{Im}(D)$ for all i implies that D is surjective (of course assuming div(D) = 0)?

Or more concretely:

QUESTION 2: Does $\{1, X, Y\} \subset \text{Im}(D)$ imply that D is surjective?

ACKNOWLEDGEMENT: The authors wish to thank the referee for pointing out an error in the original version of this paper and for writing a very constructive report.

References

- H. Bass, E. Connell and D. Wright, The Jacobian Conjecture: Reduction of degree and formal expansion of the inverse, Bulletin of the American Mathematical Society 7 (1982), 287–330.
- [2] S. Bhatwadekar and A. Dutta, Kernel of locally nilpotent R-derivations on R[X,Y], Transactions of the American Mathematical Society **349** (1997), 3303–3319.
- [3] D. Daigle and G. Freudenburg, Locally nilpotent derivations over a UFD and an application to rank two locally nilpotent derivations on $k[X_1, \ldots, X_n]$, Journal of Algebra **204** (1998), 353–371.
- [4] A. van den Essen, Polynomial Automorphisms and the Jacobian Conjecture, Progress in Mathematics, Vol. 190, Birkhäuser, Boston, 2000.
- [5] A. van den Essen, Locally nilpotent derivations and their applications, III, Journal of Pure and Applied Algebra 98 (1995), 15–23.
- [6] Y. Nouazé and P. Gabriel, Idéax premiers de l'Algèbre Enveloppante d'une Algèbre de Lie Nilpotente, Journal of Algebra 6 (1967), 77–99.

- [7] R. Rentschler, Opérations du groupe additif sur le plan, Comptes Rendus de l'Académie des Sciences, Paris **267** (1968), 384–387.
- [8] Y. Stein, On the density of image of differential operators generated by polynomials, Journal d'Analyse Mathématique **52** (1989), 291–300.
- [9] D. Wright, On the Jacobian Conjecture, Illinois Journal of Mathematics 15 (1981), 423-440.